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Abstract
The time-dependent non-crossing approximation is used to calculate the
transient currents through a quantum dot in the Kondo regime subject to a
sudden change in its coupling to the leads. The currents are found to display
transient non-universal behaviour immediately after the perturbation and then
to follow a slow universal increase toward equilibrium. The timescales for the
approach to equilibrium are shown to be the same as those recently identified in
a study of transient currents in a quantum dot subject to a sudden change in the
energy of the dot level (Plihal et al 2005 Phys. Rev. B 71 165321). We present
improved numerical algorithms which enable relatively fast calculation of the
transient response of quantum dots to sudden perturbations.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The understanding of the non-equilibrium real-time evolution of quantum many-body systems
is much less advanced than the understanding of systems in equilibrium. Non-equilibrium
effects are responsible for important phenomena such as dissipation and decoherence in
electron transport through nanodevices. Quantum dots and qubits fall into this category, where a
mesoscopic device interacts with a fermionic or bosonic bath. Advances in the nanofabrication
of quantum dots have made it possible to study non-equilibrium transport phenomena in
quantum dots in a controlled manner. Recently, Elzerman et al have emphasized the practical
importance of real-time dynamics in quantum dots for quantum computation [1]. This type of
system constitutes an ideal platform to study the Kondo effect out of equilibrium, since one can
electrically tune the parameters of quantum dots.

The Kondo effect was first discovered in bulk metals with magnetic impurities providing
localized unpaired spins [2] and was observed later in semiconducting quantum dots [3–5].
It is a many-body effect in which conduction electrons in the vicinity of a spin impurity
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screen the spin to form a collective entangled ground state at low temperatures [6]. The
most evident manifestation of Kondo physics in quantum dots occurs when an odd number
of electrons is confined within the dot. The resulting net spin is coupled to the fermionic bath
at low temperatures and a sharp peak forms at the Fermi level in the dot density of states.
The consequence of this Kondo peak is a large enhancement of the dot’s conductance. This
enhancement strongly depends on temperature, bias, and magnetic field [7–11].

Several theoretical groups have considered the effects of time-dependent ac perturbations
of the bias and gate potentials on the transport through quantum dots in the Kondo
regime [12–18]. Kondo sidebands induced by ac perturbations of the dot have recently been
observed in transport experiments on a single dot [19].

The application of abrupt perturbations by step-like switching of the gate potential or
bias [20–26] can determine the intrinsic timescales associated with the Kondo problem more
precisely than ac modulation. Three timescales have recently been identified in the transient
currents after a sudden shift of the dot level in a quantum dot coupled to two leads [20, 21].
The fastest (and trivial) timescale corresponds to charge relaxation and is associated with the
reshaping of the dot level due to its interaction with the conduction bands of the leads. This is
a non-universal non-Kondo timescale and is inversely proportional to the life-time broadening
of the dot level. The second timescale is the time it takes for the conductance of the dot to
reach within a few per cent of its equilibrium value. The third and longest timescale, which is
only present for finite bias across the dot, is the time it takes for the split Kondo peak (SKP)
oscillations caused by the interference of the Kondo resonances on each lead to dampen out.

In this paper, we analyse the conductance of a quantum dot subject to a sudden change
of coupling to its leads. We develop an efficient implementation of our numerical approach
for the solution of the time-dependent non-crossing approximation (NCA) equations [27].
This numerical improvement allows us to investigate the time-dependent response of quantum
dots for lower temperatures and smaller biases and with greater speed than in our previous
applications [20]. A comparison of the transient currents following a sudden shift in the
coupling of the dot level to its leads with the transient currents following a sudden shift of
the dot level into the same state shows that the response is almost identical. The two longer
timescales are found to be the same.

2. Method

The quantum dot is modelled by a single spin degenerate level of energy εdot coupled to leads
through tunnel barriers. This system is described by the Anderson Hamiltonian

H (t) =
∑

σ

εdot(t)nσ +
∑

kσ

εknkσ + 1
2

∑
Uσ,σ ′ nσ nσ ′ +

∑

σ k

[
Vk(t)c

†
kσ cσ + H.c.

]
, (1)

where c†
σ (cσ ) and c†

kσ (ckσ ) create (annihilate) an electron of spin σ in the dot level and
in the leads, respectively; nσ and nkσ are the corresponding number operators; and Vk is a
hopping amplitude. The Coulomb repulsion energy U is assumed to be sufficiently large so
that double occupancy of the dot level is prohibited. In the following, we will use atomic units
with h̄ = kB = e = 1.

The spectral function of the dot level has two features when the dot level εdot is well below
the Fermi level εF. First, there is a broad Fano-like resonance around the dot level energy due
to the tunnelling of electrons between the dot and the leads. The half-width of this resonance is

�(ε, t) = 2π
∑

k

|Vk(t)|2δ(ε − εk), (2)
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provided that charge relaxation is much faster than the timescale for the change of V (t). Sec-
ond, there is a sharp temperature-sensitive resonance at the Fermi level (the Kondo peak),
characterized by a low energy scale TK (the Kondo temperature):

TK =
(

D�

4

)1/2

exp

(
−π |εdot|

�

)
, (3)

where D is a high-energy cutoff equal to the half bandwidth modelled by a symmetric flat
band, and � corresponds to ε = εF. Here we use a symmetric parabolic band of half bandwidth
D = 9� [27].

The currents through the dots are calculated directly from the current operator,

Iin(t) = i
∑

kσ

Vk(t)〈c†
kσ (t)cσ (t)〉 + c.c., (4)

where 〈c†
kσ (t)cσ (t)〉 is the Keldysh propagator, which can be evaluated from the Kadanoff–

Baym time-dependent Green functions [27]. Iin(t) can be divided into contributions Ileft(t) and
Iright(t) by restricting the k summations to the appropriate lead. The transport current is given
by I (t) = [Ileft(t) − Iright(t)]/2.

In our method, the Green functions are solutions of the real-time coupled integro-
differential Dyson equations with non-crossing approximation (NCA) for the self-energy. In
the numerical algorithm [27] the Green functions G(t, t ′) are discretized on a uniform time
grid represented by matrices G(m, n) of size N × N . To model time-dependent phenomena,
these matrices are propagated in time. In each propagation step, N matrix elements must be
updated by integrals of the values of the Green functions and the self-energies over N previous
time steps. Each step of the matrix propagation thus scales quadratically with the matrix size,
and the computational scaling of the algorithm [27] is O(M N2), where M is the number of
propagation steps. For low temperatures, the size of the matrices must be taken to be very
large, because of the importance of long-timescale correlations. The resulting computational
expense was one of the main obstacles preventing a thorough investigation of transient transport
in the temperature range below TK. In the current paper, we use an improved numerical method
for the evaluation of the integrals in the coupled Dyson equations. The new algorithm employs
a multigrid approach where, in addition to a fine grid (with grid size δ), we also use a coarse
grid (with grid size � = δNg). The use of a multi-grid allows us to reduce substantially the
computational effort required for evaluation of the integrals. The computational scaling of the
new algorithm, which is described in the appendix, is O(M N2/Ng).

Throughout this paper, we study the same two systems which were investigated by Plihal
et al [20]: system one (S1) with εdot = −2� and TK = 0.0022� and system two (S2) with
εdot = −2.225� and TK = 0.0011�. The dot levels εdot are kept fixed. The dot–lead tunnelling
rates are abruptly switched at t = 0 from a small �0 (0.003 68 au), for which the current is
small, and TK � T , to � (0.0092 au) for which the Kondo effect arises.

In figure 1, we show how the calculated instantaneous conductance depends on grid ratio
Ng (see appendix) for system S2 for two different temperatures. In the present paper, we use
a fine grid spacing of δ = 15 au, which is adequate for both S1 and S2 [27]. As we see in
the magnified panels, we achieve a good convergence as we reduce the grid ratio. The data
presented below was calculated using a grid ratio of Ng = 20.

3. Results

In figure 2, we compare the instantaneous conductance resulting from a sudden change in �

with the instantaneous conductance resulting from a change in the energy of the dot level for
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Figure 1. Convergence of the calculated time-dependent conductance curves for S2 as a function
of grid ratio Ng with fixed fine grid spacing δ = 15 au. Solid curves are for T = 0.0005� and the
dashed curves are for T = 0.0015�. Black, red and blue curves (top to bottom) correspond to grid
ratio Ng of 20, 40 and 80, respectively. Panels (b) and (c) magnify the long-time part of panel (a).

Figure 2. Comparison of instantaneous conductance for the cases of changing dot–lead coupling
constant and the energy of the dot level. We show the rise of the conductance in the final state for
S1. The calculation was carried out at T = 0.005� to make both timescales visible. The red curve
corresponds to changing the dot level abruptly and the black curve is for changing the dot–lead
tunnelling constant. In the inset, we show the initial non-universal response on a magnified scale.

system S1 at a temperature above TK for infinitesimal bias. The figure clearly illustrates that
the approach to steady state occurs on the same timescale for both dot level and dot coupling
change. The curves only differ in the non-universal regime for t < 4�. The initial state in both
calculations was chosen to have the same ratio εdot/�0. If different initial states are chosen, the
differences in the conductances persist to slightly longer times, but the asymptotic timescale
(rise time of the conductance) would remain the same. We can thus conclude that the timescale
for approach to equilibrium is determined by the electronic structure of the final state.
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Figure 3. Rise rate, which is defined as the time it takes for instantaneous conductance to reach
99% of its final value, for S1 and S2 versus temperature T for infinitesimal bias. The solid dots
are for S1 and the open circles are for S2. Small (black) circles and small dots represent the data
obtained previously [20]. Large (red) circles and large dots correspond to the data taken with the
new numerical scheme. The straight line has a slope of π and passes through the origin.

3.1. Initial non-universal conductance

Figure 2 shows well-defined oscillations in the non-universal timescale reminiscent of Rabi
oscillations [20, 28]. We observe these oscillations for all temperatures considered. These fast
oscillations can be attributed to the charge relaxation, because the spin flips that give rise to the
Kondo resonance are absent in the non-universal timescale. This implies that one can neglect
the spin-dependent terms in equation (1) and solve the remaining part. Both the amplitude and
frequency of these initial oscillations can be reproduced using the master equation approach
developed previously for the spinless Anderson model in the wide band limit [29].

3.2. Risetime for zero bias

Our new numerical scheme allows us to investigate universality and instantaneous
conductances for lower temperatures than was possible previously [20]. In figure 3, we show
the calculated rise rates for the approach to equilibrium conductance for S1 and S2. The
procedure that we follow to extract these rates is identical to the one used previously [20]
and the figure includes the results obtained there for consistency. The solid line is the analytical
result for the rise rate [20]. It is clear from these results that the rise rate scales with TK.
This scaling would be preserved in an exact calculation, because it arises from a logarithmic
re-summation of perturbation theory, which is included in the NCA and implicit in the exact
calculation [17, 30]. Another important conclusion is that the rise rate saturates to a value just
above TK after T/TK gets smaller than about 0.1.

In figure 4, we plot the final steady-state conductances alongside with the exact asymptotic
curve for large ln(T/TK) [31] scaled by 4/3 to correct for the NCA error. We present the
results obtained previously [20], together with those of the new numerical scheme for lower
temperatures. The new scheme allows us to study temperatures as low as T = 0.1TK. The
results in figure 4 demonstrate that universality is preserved for temperatures down to a fraction
of TK. Our conductance results for temperatures lower than T/TK = 0.1 in figure 4 exceed the
unitarity limit and thus they are not shown. This is a well-known deficiency of NCA, as has
been shown in several studies [30].
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Figure 4. The large-time limit of G(t)/G0 versus temperature for S1 and S2. These are the final
steady-state conductance values for infinitesimal bias. Open circles correspond to S1 and solid dots
are for S2. Black circles and small dots correspond to the data obtained previously [20] and large
(red) dots represent the data taken with the new numerical scheme. The disconnected (blue) line is
the large-T asymptote scaled by 4/3.

3.3. SKP oscillations

Finally, we would like to discuss the instantaneous conductance at finite bias. For finite bias,
two Kondo resonances that correspond to each lead’s Fermi level form and broaden compared to
the infinitesimal bias situation [28, 32]. When the quantum dot is subject to a sudden change in
the dot level, quantum beating between the two Kondo resonances can give rise to an oscillatory
conductance, i.e. SKP oscillations. These oscillations can persist to long times and their period
is proportional to the bias [20]. The application of a sudden change in the coupling between
the dot level and the leads gives rise to the same SKP oscillations as for a sudden change of the
dot level.

In figure 5, we show the instantaneous conductance for S1 when the coupling to the leads
is changed for a variety of biases. As the bias increases, the frequency of the SKP oscillations
increases. The final steady-state value of the conductance decreases because of the suppression
of the Kondo resonances for finite bias. We also plot the instantaneous conductance for the
largest bias on a magnified scale, where the SKP oscillations and their damping become clearly
visible.

Figure 5 clearly illustrates that the SKP oscillations persist to long times. The previous
finite temperature study on the bias dependence of the decay rate of the SKP oscillations left
open the question whether the numerically observed SKP decay rate was equal to the 2γ rate
identified by Rosch et al for zero temperature [30]. Using our new numerical scheme, we are
able to extend our NCA approach to lower temperatures where a comparison between finite and
zero temperatures becomes more meaningful. In figure 6, we plot the calculated SKP decay
rates as a function of bias for two new low temperatures along with the data obtained previously.
We also show the zero-temperature analytical decoherence rates γ , obtained from the pertur-
bative renormalization group [30]. The figure clearly shows that the calculated decay rates of
SKP oscillations saturate as the temperature approaches zero. We find that half the decay rates
obtained from our NCA calculations correspond to roughly 2γ . It is somewhat surprising that
the NCA results agree quantitatively with those of the analytical method, since the latter in-
cludes a vertex correction which is absent in NCA. We cannot rule out that the small deviation
between our calculated decay rates for the lowest temperatures and bias is an NCA error.
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Figure 5. Instantaneous conductance of S1 for finite bias (V ) at T = 0.17TK right after the coupling
to the leads is switched. Black, dark blue, light blue, green, red and dashed black curves (top to
bottom) correspond to V = 0.04�, 0.06�, 0.08�, 0.11�, 0.15� and 0.2�, respectively, in panel (a).
In panel (b), we show the instantaneous conductance for V = 0.2� on a magnified scale.

Figure 6. Decay of SKP oscillations versus bias V for S1. Solid circles represent the analytical
calculations of 2γ at zero temperature [30]. Black squares, diamonds and downwards triangles are
previous results [20] and correspond to T = 1.4TK, 0.69TK and 0.34TK, respectively. Red open
circles and upwards triangles are the new data obtained for T = 0.17TK and 0.08TK.

4. Conclusion

In this paper, we have analysed the transient conductance of a quantum dot when the dot–
lead tunnelling rate is suddenly switched to a value where the Kondo effect is present. Our
results show that the transient currents induced by changing the coupling to the leads are almost
identical to the currents induced by changing the energy of the dot level. Using a new numerical
scheme, we are able to extend our approach to low temperatures. The decay rates of the SKP
oscillation were found to saturate for low temperatures to values very close to two times the
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decoherence rate obtained from the perturbative renormalization group studies. We hope that
these predictions will motivate further experimental and theoretical studies.
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Appendix. Details of the numerical implementation

In this appendix, we present an improved version of the algorithm for numerical solution of the
Dyson equations introduced in [27]. Here we will follow the notation of Shao et al [27]. Let us
start from a consideration of retarded Green’s functions. The Dyson equations for gσ (t, t ′) and
b(t, t ′) with t � t ′ are

∂

∂ t
gσ (t, t ′) = −

∫ t

t ′
dt̄ K̃ >

σ (t, t̄)b(t, t̄)gσ (t̄, t ′), (A.1)

∂

∂ t
b(t, t ′) = −

∑

σ

∫ t

t ′
dt̄ K̃ <

σ (t̄, t)gσ (t, t̄)b(t̄, t ′). (A.2)

For t < t ′, the gσ (t, t ′) and b(t, t ′) functions can be determined by

gσ (t ′, t) = g∗
σ (t, t ′),

b(t ′, t) = b∗(t, t ′).
(A.3)

We can represent the Green’s functions as

gσ (t, t ′) = g f
σ (t, t ′)eiωg(t−t ′),

b(t, t ′) = b f (t, t ′)eiωb(t−t ′),
(A.4)

where eiωg(t−t ′) and eiωb(t−t ′) are the oscillatory ‘carrier’ parts and g f
σ (t, t ′) and b f (t, t ′)

denote smooth, envelope-like modulating functions (see figure A.1). Figure (A.1) shows that,
after a certain time difference t − t ′, the Green’s functions g f

σ (t, t ′) and b f (t, t ′) behave almost
linearly. We will refer to this time difference as �tlin. By substituting equations (A.4) in
equations (A.1) and (A.2), one can obtain

∂

∂ t

[
g f

σ (t, t ′)eiωg(t−t ′)
]

= −
∫ t

t ′
dt̄ K̃ >

σ (t, t̄)eiωb(t−t̄)eiωg(t̄−t ′)b f (t, t̄)g f
σ (t̄, t ′), (A.5)

∂

∂ t

[
b f (t, t ′)eiωb(t−t ′)

]
= −

∑

σ

∫ t

t ′
dt̄ K̃ <

σ (t̄, t)eiωg(t−t̄)eiωb(t̄−t ′)g f
σ (t, t̄)b f (t̄, t ′). (A.6)

In steady state, both kernels depend only on the time difference rather than on individual values
of t and t̄ . The kernels can be combined with the oscillatory parts in the following manner:

K̃ >
σ (t, t̄)eiωb(t−t̄)eiωg(t̄−t ′) = K̃ >

σ (t, t̄)ei(ωb−ωg)(t−t̄)eiωg(t−t ′)

= K̃ >
σω(t − t̄)eiωg(t−t ′), (A.7)

and

K̃ <
σ (t̄, t)eiωg (t−t̄)eiωb(t̄−t ′) = K̃ <

σ (t̄, t)ei(ωg−ωb)(t−t̄)eiωb(t−t ′)

= K̃ <
σω(t̄ − t)eiωb(t−t ′). (A.8)

Let us illustrate our discretization scheme on the integral part of equation (A.6). First we split
the [t ′, t] range into pieces:
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f(
t,

t’
)

Δtlin

(a)

f(
t,

t’
)

Δt lin

(b)
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0 1000

200 400 600 8000 1000

Figure A.1. Real (a) and imaginary (b) parts of retarded Green’s functions gσ (t, t ′) dotted (black),
g f
σ (t, t ′) dash–dotted (red), b(t, t ′) solid (blue), and b f (t, t ′) dashed (green) for S1 with N = 1000,

and fixed t .

∫ t

t ′
dt̄ K̃ <

σω(t̄, t)g f
σ (t, t̄)b f (t̄, t ′)

=
[∫ t ′+�tlin

t ′
+

∫ t

t−�tlin

+
∫ t−�tlin

t ′+�tlin

]
dt̄ K̃ <

σω(t̄, t)g f
σ (t, t̄)b f (t̄, t ′). (A.9)

We will refer to the intervals [(t − t̄) < �tlin or (t̄ − t ′) < �tlin] and [(t − t̄) > �tlin and
(t̄ − t ′) > �tlin] as L̄ and L, respectively. For the L̄ interval, we use trapezoidal quadrature on
the fine grid (grid size δ):
∫ t ′+�tlin

t ′
dt̄ K̃ <

σω(t̄, t)g f
σ (t, t̄)b f (t̄, t ′) = δ

k∑

j=n

c j K̃ <
σω(m, j)b f (m, j)g f

σ ( j, n). (A.10)

Here we use integers j , n, k, and m for the time arguments, c j = 1/2 for j = n, k, and c j = 1
in all other cases. In the L interval, we employ the following decomposition:
∫ t−�tlin

t ′+�tlin

dt̄ K̃ <
σω(t̄, t)g f

σ (t, t̄)b f (t̄, t ′) =
∑

i

∫

�i

dt̄ K̃ <
σω(t̄, t)g f

σ (t, t̄)b f (t̄, t ′)

=
∑

i

g f
σ (t, ξ̄i )b

f (ξ̄i , t ′)
∫

�i

dt̄ K̃ <
σω(t̄, t), (A.11)
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where �i = [t̄i , t̄i+1] is the i th coarse grid interval and ξ̄i ∈ �i . We assume that

g f
σ (t, ξ̄i )b

f (ξ̄i , t ′) ∼= 1
2

[
g f

σ (t, t̄i )b
f (t̄i , t ′) + g f

σ (t, t̄i+1)b
f (t̄i+1, t ′)

]
, (A.12)

because of the linear character of the Green’s functions in the L interval. To obtain an accurate
estimate for the oscillatory kernel integration in equation (A.11), we use the fine grid and
Simpson’s quadrature:

∫

�i

K̃ <
σω(t̄, t) dt̄ ∼= δ

∑

j

w j K̃ <
σω(t̄ j − t) = K̃ <

σ P (t̄i , t), (A.13)

where w j are the weights. Due to the translational invariance of the kernels, one can pre-
compute K̃ <

σ P (t̄i , t) values and keep them in the core memory during the calculation.
In the differential part, we use an analytic expression for the oscillatory part and finite

differences on the fine grid for the non-periodic part:

∂

∂ t

[
g f

σ (t, t ′)eiωg(t−t ′)
] ∼= eiωg(t−t ′)

[
iωg g f

σ (t, t ′) + g f
σ (t, t ′) − g f

σ (t − δ, t ′)
δ

]
. (A.14)

The discretized version of equations (A.5) and (A.6) can be written as
(

1 + iδωg

2

)
g f

σ (m, n) =
(

1 − iδωg

2

)
g f

σ (m − 1, n) − 1

2

[
Lg(m, n) + L̄g(m, n)

]

− e−iδωg

2

[
Lg(m − 1, n) + L̄g(m − 1, n)

]
, (A.15)

and(
1 + iδωb

2

)
b f (m, n) =

(
1 − iδωb

2

)
b f (m − 1, n) − 1

2

[
Lb(m, n) + L̄b(m, n)

]

− e−iδωb

2

[
Lb(m − 1, n) + L̄b(m − 1, n)

]
, (A.16)

where

L̄g(m, n) = δ2

[
p∑

j=n

c j K̃ >
σω(m, j)b f (m, j)g f

σ ( j, n) +
m∑

j=r

c j K̃ >
σω(m, j)b f (m, j)g f

σ ( j, n)

]
,

Lg(m, n) = �δ

r∑

s=p

cs K̃ >
σ P (m, s)b f (m, s)g f

σ (s, n), (A.17)

L̄b(m, n) = δ2
∑

σ

[
p∑

j=n

c j K̃ <
σω(m, j)g f

σ (m, j)b f ( j, n)

+
m∑

j=r

c j K̃ <
σω(m, j)g f

σ (m, j)b f ( j, n)

]
, (A.18)

Lb(m, n) = �δ
∑

σ

r∑

s=p

cs K̃ <
σ P (m, s)g f

σ (m, s)b f (s, n). (A.19)

Here we use integers i , j , m, and n to denote time arguments on the fine grid in the L̄ interval.
The indices p, q , r refer to time arguments on the coarse grid in the L interval. The indices
p and q appear in the L̄ sums as well, since the fine grid is a subgrid of the coarse grid. Let
us denote by Ng = �/δ the number of fine grid points between two adjacent coarse grid
points and by N the number of fine grid points in the Green’s function matrix representation.
With increasing length of the [t ′, t] interval, the length of the L̄ interval remains constant,
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but the length of the L interval grows linearly. Therefore, in the large-N limit, the dominant
contribution to the computational cost for evaluating equations (A.15) and (A.16) comes from
the L interval and will now scale as O(N/Ng). To evaluate the Green’s function matrices, we
solve equations (A.15) and (A.16) for all elements in the same order as reported in [27]. The
computational scaling of the Green’s function matrix construction by the method presented
in [27] is O(N3). The new scheme reduces the scaling down to O(N3/Ng) by using pre-
integration in the L range without losing accuracy.

In order to obtain good estimates for the frequencies ωg and ωb, we use the previous
implementation [27] with small Ns and extract the frequencies from the Green’s functions. We
found that the values of ωg and ωb are not sensitive to the size of the Green’s function matrix
representation.

The same pre-integration scheme can be straightforwardly applied to the ‘less than’
Green’s function equations, although the expressions become more cumbersome than in the
retarded case.

To take into account the abrupt change of the dot–lead tunnelling rate or the position of the
dot level, we modify equations (A.4) as

gσ (t, t ′) = g f
σ (t, t ′)eiω1g (t−t ′) + θ(t − t1)θ(t ′ − t1)g f

σ (t, t ′)(eiω2g(t−t ′) − eiω1g (t−t ′)),

b(t, t ′) = b f (t, t ′)eiω1b(t−t ′) + θ(t − t1)θ(t ′ − t1)b
f (t, t ′)(eiω2b(t−t ′) − eiω1b(t−t ′)).

(A.20)

In equations (A.20), ω1 and ω2 correspond to the oscillation frequencies of the first and second
state, respectively, and t1 is the time of the sudden change. One can apply the two-grid scheme
for this case as well.
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